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Abstract-On the basis of the first two terms in the boundary-layer expansion, it is shown by means of 
a global energy-rate balance that the leading-edge effect upon the total heat-transfer rate is given by 
a,kAT where al has the value 0,625 at a Prandtl number of 0.72. As a result, the average Nusselt 
number for the semi-infinite plate is given by (for D = 0.72): 

IV = 0.476 Gl“‘+O.625 + O(G- l/l*) (I) 

where the O(G-1112) term is indeterminate, arising from the appearance of an eigenfunction in the 
boundary-layer expansion. 

Direct comparison of (1) with experimental data is precluded by the necessity of first determining 
finite-plate effects which, on the basis of recent analyses of the trailing-edge region for the forced-flow 

problem, are expected to contribute a term of 0(G1”6) to (1). 

NOMENCLATURE 

total drag on plate between leading edge and 

local x (per side and per unit width); 

gravitational acceleration (along negative x- 

axis) ; 
local Grashof number, = gBATx3/vz; 

length of plate (if finite); 
local Nusselt number, = q,x/(kAT); 
average Nusselt number, = Q/(kAT); 
local heat-transfer flux from plate, 

= - k(dT/&&,; 
total heat-transfer rate from plate between 

leading edge and local x (per side and per 

unit width); 
polar radial coordinate; 
temperature; 
x-component of velocity; 

= (v/x)G”*; 
magnitude of uniform stream in forced-flow 

case; 
y-component of velocity; 
vertical coordinate; 
horizontal coordinate. 

G SIX E G-114 c (x/A)-3’4; 

= y/6; 

angular coordinate measured from plate; 

= (u2/(gpAT))“3; 
dynamic viscosity; 
kinematic viscosity; 

density of fluid; 

Prandtl number. 

Subscripts 

L value at x = L; 

K value at wall; 

co. value of undisturbed state. 

1. INTRODUCTION 

HIGHER-ORDER boundary-layer effects for natural con- 
vection around a semi-infinite vertical plate have been 

considered by Yang and Jerger [l] and Kadambi [2]. 
In both cases, the boundary-layer expansion was in 
powers of G- lid The first-order correction to the 
classical solution was obtained in [l] and this was 
extended to second-order in [Z]. Although the first- 

Greek symbols 
order correction to the temperature field in the bound- 
ary layer was found to be identically zero, neither of 

P> coefficient of thermal expansion; the above investigations noted that the first-order 

6, characteristic thickness of boundary layer, correction to the global heat transfer is not zero. 
= x/G’i’; More specifically, by calculating the total thermal 

AT, =‘T,-T,; convection at any value of x in the boundary-layer 
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region, it is shown in the present paper that the first- subject to the boundary conditions: 
order correction to the global heat transfer (per side 

and unit width of plate) is given by aikAT where a, 
isa Prandtl-number-dependent numerical factor having 

the value 0.6248 at cr = 0.72. It is noted that this 
contribution is not x-dependent and therefore does not 
arise from a local conductive heat transfer from the 

plate in the boundary-layer region (hence, it went 
unnoticed in the previous investigations) but, rather, 

is to be interpreted as the “leading-edge” effect. (The 
“leading-edge region” corresponding to r = O(i) and 
representing the region in which the boundary-layer 

approximation breaks down.) It is remarkable that the 
boundary-layer expansion contains an explicit evalu- 

ation of the total heat-transfer contribution by a region 
in which the boundary-layer approximation is itself 
non-applicable. This result is completely analogous to 
that of Imai [3] who, by means of a global force 

balance, determined that the leading-edge drag is 
l.l63pU, for forced flow over an aligned semi-infinite 

plate. 
Although not considered in the previous investi- 

gations, the present paper also includes a determination 
of the first three eigenvalues and eigenfunctions appear- 
ing in the boundary-layer expansion. The most im- 

portant of these corresponds to a correction of order 
(C;- L/4)4’3 and therefore appears before the second- 
order term obtained in [2]. In the manner of Stewartson 
[4], this leading indeterminacy can be interpreted as 

an apparent shift in the location of the leading edge 
of plate as seen from the boundary-layer region. 

It is also shown in the present paper that the second- 
order correction obtained in [2] is incorrect. In par- 
ticular, the error is due to improper matching 

considerations. 

I4 = 0 = I’. T = T, at )’ = 0. x > 0 (2.5) 

?a c:T 
~~ = 0 = I’. ~~ 
ij (:j 

= 0 at y = 0, x i 0 (2.6) 

u v 0 - U, T - T, as r -+ co, 0 # 0. (2.7) 

If possible indeterminacies (eigenfunctions) are tem- 
porarily omitted (to be considered in Section 4) then 
appropriate expansions for the streamfunction. tem- 
perature and pressure in the boundary-layer region, 

J = O(6). x > O(i.), 

are given by : 

rl, = us{F,(B)+EFI(~)+E2F2(~)+...) (2.8) 

T= T,+AT(H,,(~)+cH,(~)+a2H2(~)+...) (2.9) 

p=/L’2iC2P*(~)+...j (2.10) 

where F, and Ho correspond to the classical problem: 

F;‘+$FoF;;-fF;lF;+Hn = 0 7 

H;;+$rF,H;, = 0 
(2.11) 

F,(O) = 0 = F;(O) = F;(m) = H,(x), 

H,,(O) = I. 

The boundary-layer region is complemented by an 

irrotational, isothermal, external region: 

0 # 0. I’ > O(i) 

where appropriate expansions are: 

$=$,+$2+... 

T = T, 

p=p,+p*+... 

(2.12) 

(2.13) 

(2.14) 

2. BOUNDARY-LAYER EXPANSION 
In particular, numerical integration of (2.1 I ) for 

(T = 0.72 results in: 
Employing the Boussinesq approximation and 

neglecting viscous dissipation, the governing equations F;;(O) = 0.95604, H;(O) = -0.35683, 

are: F,>;)(x) = 1.69389. (2.15) 

(2.1) 
If F,(m) is denoted by “A,,” then. as shown by Yang 
and Jerger [l], $i is governed by 

v*$1 = 0; $,,,=, = Aov $I,,=, = 0 (2.16) 

+y/GT-Tx,)-~$ (2.2) where the governing equation indicates that the 
vorticity is zero, and the inhomogeneous boundary 

(u;++= v($+$)u-;$ (2.3) 
condition represents a matching of L’ with the boundary- 
layer solution. The solution of (2.16) can be written as 

314 

sin a(() - 7~) (2.17) 
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which, when combined with Bernoulli’s equation. 

results in 

j1 = _(a Aoyp(~)2(;)‘i2. (2.18) 

By expanding (2.17) and (2.18) around (I = 0 and 
noting that 0 = an + O(E~), r = x[l + O(E’)], it follows 
that the behavior of $i and a, in the matching region 

is given by 
I$, = &1/6[1 +$EV/+O(&2)] (2.19) 

pi = -(~~,)2flE2~2[l+O(&2)]. (2.20) 

Hence, as shown by Yang and Jerger [1], F, and 
H, are governed by 

F;“$-&P;‘-$F;F;+H, = 0 1 

H; + $J(F,H,)’ = 0 

i 

(2.21) 
F,(O) = 0 = F;(O) = H,(O) = H,(co), 

F;(E) = $40 

where the inhomogeneous boundary condition rep- 
resents a matching with the O(E) term in (2.19). 
Numerical integration of (2.21) at c = 0.72 results in 

F;‘(O) = 0.39636, H, = 0, A, = -2.53796 (2.22) 

where 

F,(ry) 2 $A,q+A, as q + x. (2.23) 

It follows that q2 is governed by 

V2G2 = 0; $2),=0 = Arv, $,),=, = 0 (2.24) 

which, as shown by Kadambi [2], results in 

$ =A 
2 1” 

Combined with 6, and Bernoulli’s equation. it follows 
that 

cos i(f)- n). (2.26) 

Finally, the governing equations for P2, F2 and Hz 
are given by 

P;=~~F~F;I+~~F~F~-~F,F;,+~~F;;‘-~F;; (2.27) 

F;“+$F,,F;++F;F;-$F;F,+H, = -fP2 

-g/ 2-$F;F;+aF;,-~~~~-~a2F~’ 1 P’ (2.28) 

H; + u($F, H; + +F;H, - $H;F,) 
= -&H;, - &12H;; (2.29) 

subject to the conditions: 

F2(0) = 0 = F;(O) = Hz(O) = H,(m), 7 
P2(a) = - ($Ao)2> 

(2.30) 

It is noted that (2.27)-(2.29) are in agreement with 

Kadambi [2] but that (2.30) is not. In particular, the 

values of Pz(xm) and F;‘(m) are specified incorrectly 

in [2]; specifically, the non-zero values of P2(so) and 
F;(m) in (2.30) follow from the behavior of pi in (2.20) 
and the O(E’) term in (2.19). respectively. Numerical 
integration at (T = 0.72 results in 

F;(O) = -0.99487, H;(O) = -0.89145, 
A2 = - 1.50005. (2.31) 

3. GLOBAL CONSIDERATIONS 

Based upon the results in Section 2, it follows that 

the local wall heat flux in the boundary-layer region 

is given by 

q,,,= -k~{H;(O)+i:‘H;(Ojt~(e’)). (3.1) 

Although the total heat transfer could be obtained by 
evaluating the quantity 

s 

X 

qw dx> 
0 

(3.1) is only applicable where E < O(l), i.e. x > O(L), 

as is suggested by the fact that the second term in (3.1) 
is not integrable at x = 0. Alternatively, the global 
heat transfer can be obtained by calculating the total 
thermal convection at any cross-section of the bound- 

ary layer. That is, 

a 

Q=pC, 
s 

u(T- T,)d_v = pC,UATb 
s 

F’Hdq 
B.L 0 

kAT 
= ,-~ ~~o+L2,E+U2C2+O(C3)) (3.2) 

where 

s 

JI 

s 

Ix 
uo = 0 FbH,dq. u, = a F;Hodq. 

0 0 

a2 = I? 

s 

cc (F,$H,+F;H,)dr/. (3.3) 
0 

In particular, for e = 0.72, 

a, = 0.47577, a, = 0.62480, a2 = - 1.18859. (3.4) 

Hence, it is seen from (3.1) and (3.2) that although 

the O(E) correction to qw vanishes in the boundary- 
layer region. the O(E) correction for G is non-zero 
and, from (3.3) is reflected in the boundary layer as 
a convection of the primary temperature by the first- 
order velocity. This energy must arise from the heat 
transfer in the leading-edge region and indicates that 
the local behavior of qw in the latter region must 
exceed that given by the leading term in (3.1). That 
is, letting 

4 w,, 5 -kyH,‘,(O) (3.5) 
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and noting that 

kAT X 
fl,---.= 

s 
qwo d.x 

E 0 
(3.6) 

it follows from (3.2) that 

X 
a,kAT= lim (4w - qwo) dx. (3.7) 

X 
i1 

0 
-z 

2 

That is, the 1.h.s. of (3.7) is equal to the integrated 

value of the difference between the actual wall heat 
flux and that corresponding to the classical boundary- 
layer solution. In other words, arkAT represents the 
leading-edge effect upon the global heat-transfer rate. 

In a similar manner, a global force balance in the 
vertical direction gives the following result for the total 

drag on plate (per side and unit width) between the 
leading edge and local value of x : 

D = $ {~-j:~[;F;(o)] +~-“~[2F;(0)] 

+o(i)+~“~[-4F;‘(O)]+...) (3.8) 

where the O(1) contribution is indeterminate and is 
due to the global buoyant force acting throughout 
the leading-edge region or, alternatively, can be inter- 

preted as the leading-edge effect upon the total drag. 
That is, unlike the forced-flow problem considered by 
Imai [3]. the boundary-layer expansion in the present 

problem does not contain an explicit evaluation of the 

leading-edge drag. 

4. EIGENVALUES-EICENFUNCTIONS 

If the eigenvalues associated with the boundary-layer 
expansion are denoted by “M,” and the associated 
normalized eigenfunction by (b,{9l), O,(q), then addi- 
tional terms of the form U&+C,,& and ATc’CJI, 
must be added to the expansions in (2.8) and (2.9). 
respectively. with the multiplicative constant C, being 

indeterminate, in general. 
Inclusion of these terms in the boundary-layer expan- 

sion and substitution into (2.2) and (2.4) results in the 
following linear homogeneous equations for (Pn and 0, : 

cp;‘+:F,qs:: + (&” - l)Fb#:, 
+ $(l --un)F~~,+(ln = 0 (4.1) 

Ir,~+tFnit+a~,~~~~"+~rl-d(")H;i~~ = 0 (4.2) 
c 

subject to the homogeneous boundary conditions: 

&CO) = 0 = #Ii(O) = #L(X) = O,(O) = O”(co). (4.3) 

There exist non-trivial solutions of (4.1)-(4.3) only 
for particular values of a,. In particular. the smallest 

such value is x, = 4/3 with ~rresponding 
function given by 

where the normalization has been taken 

&(a) = 1. Hence, for CT = 0.72, 

&(O, = 0.18818. O;(O) = 0.07022. 

eigen- 

(4.4) 

to be 

(4.5) 

By means of a straightforward numerical scheme. it is 
found that. for (T = 0.72: 

x2 = 3.189. 4’;(O) = - 1.082. 

(r;(O) = -0-2245 

13 = 8.311, @‘j(O) = 0.2160, 

O;(O) = 0.4602. ~ 

(4.6) 

It is noted that L’d~~/~d, and AT’E~‘~/), are propor- 
tional to the x-derivative of the zeroth-order stream- 
function and temperature in (2.8) and (2.9). Hence. 
following Stewartson [4]_ Cr is related to an apparent 
shift in the location of the leading-edge as seen by 

the boundary-layer region. 
It is also noted that the contribution to 0 by the 

leading eigenfunction is 

Cicr, ,kATr”” : , (4.7) 

where 

J 

% 
u‘$/j = D (F;(), +4;H,,)dv (4.8) 

0 

which takes on the value 0.28087 at cr = O-72. 

On the other hand. the contribution of the leading 

eigenfunction to D is given by 

4CiP “,; a-- ““4’;(O) (4.9) 

which is seen to be unbounded as xi/; + xc. That is, 
although the leading eigenfunction results in a neg- 
ligible cont~bution to the global heat transfer in the 

boundary-layer region. the interaction of C,ATE~~~O~ 
with the gravitational field results in a buoyant force 
which. when integrated over the boundary layer. is 
proportional to (x/i.)‘@. Such an unbounded con- 
tribution to D by an eigenfunction is apparently 
peculiar to natural-convection boundary layers. i.e. to 
flows in which a body force acts throughout the 
boundary-layer region. 

5. DISCUSSION 

Based upon the preceding sections. it follows that 
the local wall heat flux in the boundary-layer region 
is given by (for B = 0.72): 

q, = hy {0~3568-0~0702C,G-“3 

+0%915 G.- “12+O(Gm2’3)j (5.1) 
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where the bracketed quantity also equals N/G114 and 
the 0(G-2’3) term is due to the non-linear interaction 

of the leading eigenfunction with itself. Similarly, the 

total heat transfer is given by: 

0 = kATG1’4{0.4758 +0.6248 G- 1’4 

$0.2809 C1G-“3 - 1~1886G-“2+O(G-2’3)} (5.2) 

where the bracketed quantity also equals m/G114. 
Hence, although the leading correction to the local 
Nusselt number is proportional to C1 and is therefore 
indeterminate. the leading correction to the average 
Nusselt number is known explicitly. That is. 

IV = 0~476G”4+0~625+O(G-1’12). (5.3) 

Clearly, it would be desirable to compare (5.3) with 
available experimental results. However, all such data 

for R are averaged over the entire length of a finite 

plate. Hence, in addition to basing m and G in (5.3) 
upon x = L, it would also be necessary to include the 
effects of the trailing edge and wake region upon m. 

Yang and Jerger [l] have indeed estimated the effect 

of the wake upon the boundary-layer and their result 
would require subtracting z 0.325 from the 0.625 in 
(5.3). However, a more accurate estimate in the appen- 

dix indicates that 0.086. rather than 0.325. should be 
subtracted. 

A second effect arising from the finite plate length 

is the breakdown of the boundary-layer approximation 
in the vicinity of the trailing edge. In a manner 
completely analogous to that of Imai [5] and Stewart- 
son [6] for the forced-flow problem, it follows that 
the trailing-edge region is of order L/G;‘* in extent 
and that it contributes a term of O(Gi”‘) in (5.3). 
However. in a revised analysis by Stewartson [7] and 
an independent investigation by Messiter [8], it has 
been shown on an order-of-magnitude basis that the 
effect of the trailing edge is more complicated and 
extensive than above. According to this more recent 
“triple-deck” analysis, the influence of the trailing 

edge in the present problem extends over a region of 
order _L/G2’16 and contributes a term of 0(Gi’16) to 
(5.3). That is, the triple-deck theory indicates that the 
trailing-edge effect upon m is larger than that of the 
leading edge. 

If this latter structure is correct, then, pending its 

detailed numerical solution, the leading correction to 
m for the finite plate remains unknown and comparison 
with experiment is unwarranted. 
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APPENDIX 

Interaction of Wake and Boundary Layer (Finite Plate) 

This effect arises from the influence of the wake upon 
the irrotational-flow region, particularly upon the velocity 
at the outer edge of the boundary layer. In estimating this 
effect. Yang and Jerger [1] followed a procedure employed 
by Kuo [9] for the forced-flow problem and obtained the 
first-order irrotational flow by integrating a variable sink 
distribution along y = 0 based upon u = 0 for x < 0. 
v = T aA,&U for 0 Q x < L(y = 0*) and v = 0 for x > L. 

It is noted. however, that whereas the asymptotic wake 
in the forced-flow problem corresponds to the flow down- 
stream of a concentrated drag force, the solution of which 
has zero influx at its outer edge. the asymptotic wake in 
the present problem corresponds to the natural-convection 
plume above a concentrated heat source, the solution of 
which has a non-zero influx. In particular, if the location 
of the heat source is taken to be the trailing edge of the 
plate then (see. e.g. Fuji [lo]), at the outer edge of the 
plume (for CJ = 0.72): 

v ,c -215 

0 = T l.310x x 
i> 

(A.l) 

where x E ~*/(gbdT)“~, AT = o/k, _f = x-L and 0 % 2 
(0.476)kATG;14 where the factor “2” is due to the two sides 
of the plate. Hence, (A.l) can be rewritten as: 

(A.2) 

which is to be compared with v at the outer edge of 
boundary layer: 

v = f 1.270 y Gt14 ? 0 
- 114 

L L (A.3) 

where the numerical factor in (A.3) is the value of $A0 
at Q = 0.72. 
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FIG;. 1. Curve A: 1~27O(s:L)~ “a; curve B: 1.297((r-L)/L)-“:‘; dashed curve by 
graphical interpolation. 

A plot of these two results, together with a curve fit 
connecting the two between their respective regions of 
applicability. is shown in Fig. I. The difference between the 
(x/L)~‘.‘~ curve and the lower curve represents the effect 
of the wake. If this difference is denoted as q(c), where 
5 = x/L, and if u,(t) denotes the wake-induced correction 
to II at the outer edge of boundary layer. then. by super- 
position of a variable sink distribution. 

The resulting values of 11, for 0 < C < 1 can be fairly well 
approximated by 

cr,(f) = -t G~‘i[0~4580+0~0189~+0~0022~‘]. (AS) 

Hence, following Yang and Jerger [I] but with use of this 
more appropriate II,. the resulting contribution to e by the 
wake is - -0.086kAT at o = 0.72. (It is noted that the 
same value was obtained when the heat source was taken 
to be at < = 0.6 rather than 5 = 1.) 

CONVECTION NATURELLE SUR UNE PLAQUE VERTICALE SEMI-INFINIE: 
EFFETS D’ORDRE ELEVE 

Resume En considtrant les deux premiers termes du dCveloppement de la couche limite. on montre h 
I’aide du bilan global d’knergie. que I’elTet du bord d’attaque sur le taux de transfert thermique est donnb 
par u,liAT, oti (I~ prend la valeur 0.625 pour un nombre de Prandtl &gal B 0.72. Le nomhre de Nusselt 
moyen. pour la plaque semi-infinie. est donnP par (g = 0.72): 

.v = 0.476C;“J+0.625+U((; I”‘) (11 

oti le termc indktermink O(G I”‘) ,” s lntroduit sous I’aspect d’une fonction propre dans le dCveloppement 
de couche limite. 

Une comparaison directe de (I) avcc Its resultats expkrimentaux est difficile a cause de la n&essit& de 
dkfinir en premier les effets d’une longueur linie qui. sur la base d’analyses rCcentes de la rkgion du bord 

de fuite pour la convection for&e. sont supposCs faire intervenir dans (I) un terme O(G1’lb). 

FREIE KONVEKTION UM EINE HALBUNENDLICHE, 
VERTIKALE PLATTE: EINFLfrSSE HBHERER ORDNUNG 

Zusammenfassung-~ Ausgehend von den ersten beidcn Gliedern in der Gleichung fiir die Grenzschichtdicke 
wird mit Hilfe einer Gesamtenergiebilanr gezeigt. dal3 der EinfluR der Vorderkante auf den gesamten 
Wirmetibergang durch (I, kAT gegeben ist. wobei uI hei einer Prandtl-Zahl von 0.72 den Wert 0.625 hat. 
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Als Ergebnis wird eine mittlere Nusselt-Zahl fur die halbunendliche Platte angegeben mit 

ml, = 0.476G1’4+0,625+O(G~ii’Z) (1). 

wobei O(G- “‘*)? vom Auftreten einer Eigenfunktion in der Grenzschichtdicke an. unbestimmt ist. 
Der direkte Vergleich von (1) mit experimentellen Ergebnissen kann erst nach Abschlug von 

Untersuchungen an endlichen Platten durchgefuhrt werden. doch ist aufgrund frtiherer Untersuchungen 
des Bereichs der Hinterkante bei erzwungener Stramung zu erwarten, daB bei diesen der Term 0(G”16) 

zu (1) dazukommt. 

ECTECTBEHHAX KOHBEKLIIIX BIXkl3kl IIOJIY6ECKOHEYHOI? BEPTWKAJIbHOfi 
I-IJIACTklHbI. 3QQEKTbI BbICBIEI-0 I-IOPXAKA 

hlllOTil~R- Ha OCHOBe nepBbIX AByX WIeHOB B PaWIO~eHifEi nOrpaHWfHOr0 UIOR nOCpeACTBOM 
BbIwcneHsus o6lsero sneprerwrectcoro 6aJrnaHca noKa3aH0, ST0 BnWffHsie nepeAHei K~~MKH Ha 
CyMMapHyH) HHTeHCUBHOCTb TeIIJIOO6MeHa OnpeAeJIReTCSl BeJIWWHOlt a,kAT, l-Ae a, paBH0 0,625 
np&i Pr= 0,72. B pe3ynbTaTe CpenHee WCJIO Hyccenbra AJ~III nony6ecKoHerHok nJIacTFiHb1 npe 
a=0,72 onpeAenneTcrrcneAyIoquM o6pa3oM: 

N=0,476G1'4+0,625 + O(G-"I') (1) 
rAeO(G-"'2)-HHeOnpeAeAeHHbIk~neH,BbITeKalouIIi~BC~eACTBrienO~BAeH~~~6CTBeHHOi~yHK~WW 
B pasnomeeuu norpaHurHor0 cnos. 

HenOCpeACTBeHHOe CpaBHeHW ypaBHeHH5I (1) C 3KCnepEfMeHTaJIbHbIMI.i AaHHbIMU 3aTpyAHeHO 
npeXiAe BCer0 U3-3a He06XOAWMOCTW OnpeAeJTeHHR @$eKTOB KOHe'IHOt IUIaCTWHbI, KOTOpbIe, KaK 
npeAnonaraeTcs,Ha 0cHoBe nocneAHux accneAoBaHai o6nacTa 3aAHet~po~~H ~3aAa9e 0 BbIHym- 

AeHHOM TeYeHHH npHBOAJlT K nOl(BJIeHAiO B ypaBHeHHEi(l)'IJIeHa nOpaAKa 0(G"16). 


