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Abstract—On the basis of the first two terms in the boundary-layer expansion, it is shown by means of
a global energy-rate balance that the leading-edge effect upon the total heat-transfer rate is given by
a,kAT where a; has the value 0-625 at a Prandtl number of 0-72. As a result, the average Nusselt
number for the semi-infinite plate is given by (for ¢ = 0-72):

N =0476 GY* 40625+ 0(G™''?) (1

where the O(G~'/!2) term is indeterminate, arising from the appearance of an eigenfunction in the

boundary-layer expansion.

Direct comparison of (1) with experimental data is precluded by the necessity of first determining
finite-plate effects which, on the basis of recent analyses of the trailing-edge region for the forced-flow
problem, are expected to contribute a term of O(G*/*®) to (1).

NOMENCLATURE

D, total drag on plate between leading edge and
local x (per side and per unit width);

g, gravitational acceleration (along negative x-
axis);

G, local Grashof number, = gBATx/v?;

L, length of plate (if finite);

N, local Nusselt number, = q,,x/(kAT),

N,  average Nusselt number, = Q/(kAT);

G local heat-transfer flux from plate,

= —k(0T/0y)y=o0;
total heat-transfer rate from plate between
leading edge and local x (per side and per

©

unit width);

r, polar radial coordinate;

T, temperature;

u, x-component of velocity;

U, =/x6G'"%

U,, magnitude of uniform stream in forced-flow
case;

v, y-component of velocity;

X, vertical coordinate;

A horizontal coordinate.

Greek symbols

B, coefficient of thermal expansion;

o, characteristic thickness of boundary layer,
= x/G'4;

AT, =T,-T,;
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g, =6/x = G~ Y4 = (x/2)” ¥4,
1, = y/é;
0, angular coordinate measured from plate;
Ao =(/(gBAT)';
U, dynamic viscosity;
v, kinematic viscosity;
o, density of fluid;
a, Prandt] number.
Subscripts
L, value at x = L;

w, value at wall;
00, value of undisturbed state.

1. INTRODUCTION

HIGHER-ORDER boundary-layer effects for natural con-
vection around a semi-infinite vertical plate have been
considered by Yang and Jerger [1] and Kadambi [2].
In both cases, the boundary-layer expansion was in
powers of G~ V4 The first-order correction to the
classical solution was obtained in [1] and this was
extended to second-order in [2]. Although the first-
order correction to the temperature field in the bound-
ary layer was found to be identically zero, neither of
the above investigations noted that the first-order
correction to the global heat transfer is not zero.
More specifically, by calculating the total thermal
convection at any value of x in the boundary-layer
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region, it is shown in the present paper that the first-
order correction to the global heat transfer (per side
and unit width of plate) is given by a;kAT where a,
isa Prandtl-number-dependent numerical factor having
the value 0:6248 at ¢ = 0-72. It is noted that this
contribution is not x-dependent and therefore does not
arise from a local conductive heat transfer from the
plate in the boundary-layer region (hence, it went
unnoticed in the previous investigations) but, rather,
is to be interpreted as the “leading-edge” effect. (The
“leading-edge region” corresponding to r = O(4) and
representing the region in which the boundary-layer
approximation breaks down.} It is remarkable that the
boundary-layer expansion contains an explicit evalu-
ation of the total heat-transfer contribution by a region
in which the boundary-layer approximation is itself
non-applicable. This result is completely analogous to
that of Imai [3] who, by means of a global force
balance, determined that the leading-edge drag is
1-163uU.,, for forced flow over an aligned semi-infinite
plate.

Although not considered in the previous investi-
gations, the present paper also includes a determination
of the first three eigenvalues and eigenfunctions appear-
ing in the boundary-layer expansion. The most im-
portant of these corresponds to a correction of order
(G™Y*)** and therefore appears before the second-
order term obtained in [ 2], In the manner of Stewartson
[4], this leading indeterminacy can be interpreted as
an apparent shift in the location of the leading edge
of plate as seen from the boundary-layer region.

It is also shown in the present paper that the second-
order correction obtained in [2] is incorrect. In par-
ticular. the error is due to improper matching
considerations.

2. BOUNDARY-LAYER EXPANSION
Employing the Boussinesq approximation and
neglecting viscous dissipation, the governing equations
are:
du Cv

—t—= 2.1
ox  dy 1)

c Ié I& N é
U—Fv—Ju=vlS5+=|u
éx 8y ox? o ay?

1ép
+gB(T-T,)——+- (22)
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<uﬁx U(?y) a(ﬁxz 7y2> @4

subject to the boundary conditions:

u=0=uv, T=T, at y=0, x>0 (2.5
Au cT

—=0=0v. —=0 at y=0, x<0 (2.6)
dy cy
u~0~v, T~T, as r—oo, 0#0. (27

If possible indeterminacies (eigenfunctions) are tem-
porarily omitted (to be considered in Section 4) then
appropriate expansions for the streamfunction, tem-

perature and pressure in the boundary-layer region.
y=00), x> 0(4),

are given by:

W = US{Fon) +eF(m) +e*Fam+...} (2.8)
T = T, +AT{Hy(n) +eH(n) + & Hy(m + ...} (2.9)
p=pUe Py +...} {2.10)

where F, and H, correspond to the classical problem:
Fy' +2F Fg—3F,Fy+Hy =0
H{+36F,Hy =0
Fy(0) = 0 = F5l(0) = Fo(20) = Hyl(0),
Hy(0) = 1.

(2.11)

The boundary-layer region is complemented by an

irrotational, isothermal, external region:
0#£0, r>0{2)

where appropriate expansions are:

Y=g+t (2.12)
T=T, (2.13)
p=Pi4Pat.. (2.14)

In particular, numerical integration of (2.11) for
¢ = 0-72 results in:

F§(0) = 095604, Hy(0) = —0-35683,

Fo{oc) = 1-69389.  (2.15)

If Fy(oc) is denoted by “A4,” then. as shown by Yang
and Jerger [1], ¢, is governed by

N\
VA =0; §)g=0= Ao"(}) . Vie=r =0 (2.16)

where the governing equation indicates that the
vorticity is zero, and the inhomogeneous boundary
condition represents a matching of v with the boundary-
layer solution. The solution of (2.16) can be written as

) N 374
L= =240 L) sindo-m 217
v A
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which, when combined with Bernoulli’s equation,

results in
3 2 v 2 )u 1/2
fr=—(>4 ) (2) .
" (4 > p(z) ()

By expanding (2.17) and (2.18) around ¢ =0 and
noting that 0 = en+0(&?), r = x[1 4+ 0(e?)], it follows
that the behavior of ¥, and p, in the matching region
is given by

(2.18)

W = AgUS[1+ 2en+0(e?)]
Pr = —(340)°pe? U [1+0()].

Hence, as shown by Yang and Jerger {1]. F; and
H, are governed by

(2.19)
(2.20)

F" +3FoF —1F,Fi+H, =0
H{+30(FyH,) =0 221)
Fi(0) = 0 = F{(0) = H,(0) = Hy(0),
Fi(oc) = 34,

where the inhomogeneous boundary condition rep-
resents a matching with the O(e) term in (2.19).
Numerical integration of (2.21) at 6 = 0-72 results in

F{(0)=039636, H, =0, A4,= —253796 (2.22)

where

Fi) ~ 3Aon+4, as

It follows that J, is governed by
VA2 =0; Pads=o= A1 Y2)o=n =0 (224)
which, as shown by Kadambi [2], results in

~ 0
Y, = A1v<1 —7>.
T

Combined with i, and Bernoulli’s equation, it follows

that
5/4
p 3\[A A1p<;> <—> cos3—n). (2.26)

Finally, the governing equations for P,, F, and H,
are given by

n—oo.  (223)

(2.25)

Py = 1enFoFo+ fsnFoFo —TsFoFo+4nFy’ —4Fy (2.27)
Fy'+3F, F§+7F0F2 3FoF,+Hy = — %P,
— NPy~ FiFi+4Fo— TenFs — 1en°F5' (2.28)
H3+0(3FoHy+3FyHy, — 2HYF,)
= —1enHo—1sn’Hy (2.29)

subject to the conditions:

F2(0) = 0 = F3(0) = Hy(0) = Hy(00),
Py(0) = ‘(%Ao)z»
(2.30)

A
Fn) ~ %Aoﬂz—i’?‘*‘/‘iz as 1 0.

It is noted that (2.27)-(2.29) are in agreement with
Kadambi [2] but that (2.30) is not. In particular, the
values of P,(ac) and F3(co) are specified incorrectly
in [2]; specifically, the non-zero values of P,(c0) and
F3(c0) in (2.30) follow from the behavior of p; in (2.20)
and the O(¢?) term in (2.19), respectively. Numerical
integration at ¢ = 0-72 results in

F3(0) = —099487, H;(0) = —0-89145,
A, = —1-50005. (2.31)

3. GLOBAL CONSIDERATIONS
Based upon the results in Section 2, it follows that
the local wall heat flux in the boundary-layer region
is given by

AT
Gy = _kT {Hy(0) + &2 H5(0)+ O(£%)}. (3.1
Although the total heat transfer could be obtained by

evaluating the quantity

J qwdx,
0

(3.1) is only applicable where & < O(1), i.e. x > O(4),
as is suggested by the fact that the second term in (3.1)
is not integrable at x = 0. Alternatively, the global
heat transfer can be obtained by calculating the total
thermal convection at any cross-section of the bound-
ary layer. That is,

oo

0= pCpJ w(T—T,)dy = pC,,UAT(SJ F'Hdp
BL. 0
kA
= ——{ag+ae+ae* +0*)} (3.2)
g
where
ay = aj FoHodn, ay = O’J FiH,dn,
0 0
a; = Jj (FoH,+ F3Hy)dn.  (3.3)
4]
In particular, for ¢ = 0-72,
ap = 047577, a, = 062480, a,= —1-18859. (3.4)

Hence, it is seen from (3.1) and (3.2) that although
the Ofe) correction to ¢, vanishes in the boundary-
layer region, the Ofe) correction for Q is non-zero
and, from (3.3), is reflected in the boundary layer as
a convection of the primary temperature by the first-
order velocity. This energy must arise from the heat
transfer in the leading-edge region and indicates that
the local behavior of ¢, in the latter region must
exceed that given by the leading term in (3.1). That
is, letting

AT

Gwo = —k—

5 Ho0)

(3.5)
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and noting that

kAT *
ag—— = J' Grep AX (3.6)
€ 0
it follows from (3.2) that
a kAT = lim j‘ (G Guup) dX. (3.7
0

()=

That is, the Lhs. of (3.7) is equal to the integrated
value of the difference between the actual wall heat
flux and that corresponding to the classical boundary-
layer solution. In other words, a;kAT represents the
leading-edge effect upon the global heat-transfer rate.

In a similar manner, a global force balance in the
vertical direction gives the following result for the total
drag on plate (per side and unit width) between the
leading edge and local value of x:

2
D= p (e PEFHO] +o 2 [2F{0)]

: +0(1) + '3[ ~4F50)]+...} (3.8)
where the O(1) contribution is indeterminate and is
due to the global buoyant force acting throughout
the leading-edge region or, alternatively, can be inter-
preted as the leading-edge effect upon the total drag.
That is. unlike the forced-flow problem considered by
Imai [3]. the boundary-layer expansion in the present
problem does not contain an explicit evaluation of the
leading-edge drag.

4. EIGENVALUES-EIGENFUNCTIONS

If the eigenvalues associated with the boundary-layer
expansion are denoted by “w,” and the associated
normalized eigenfunction by ¢,(n), 6,(x). then addi-
tional terms of the form UdeC,¢, and ATe+C,0,
must be added to the expansions in {2.8) and (2.9),
respectively, with the multiplicative constant C, being
indeterminate, in general.

Inclusion of these terms in the boundary-layer expan-
sion and substitution into (2.2) and {2.4) results in the
following linear homogeneous equations for ¢, and 0,:

v +iFody + (G0, —1)Fon
+31 =0, )F§¢,+0,=0 (4.
1
— O+ 3Fo 0+ 30, Fo 0+ 31 — o, ) Hyp, = 0 (4.2)
g

subject to the homogeneous boundary conditions:
$af0) = 0 = $,(0) = P (cc) = 0,(0) = t,(c0).

There exist non-trivial solutions of (4.1)-(4.3) only
for particular values of «,. In particular, the smallest

{4.3)

such value is z; =4/3 with corresponding eigen-
function given by
¢ = ! (Fo—3nFo). 0, = ! Hj (4.4)
1= o Nbe) = 3A0’10 .
where the normalization has been taken to be
¢.{00} = 1. Hence, for 6 = 072,

10} = 0-18818.  0{0) = 0-07022. 4.5)

By means of a straightforward numerical scheme, it is
found that. for ¢ = 0-72:

%y = 3189, ¢%(0) = — 1082,

04(0) = —0-2245
5(0) = 0-2160,

04(0) = 0-4602.

It is noted that Ude*?¢, and ATe*30, are propor-
tional to the x-derivative of the zeroth-order stream-
function and temperature in (2.8) and (2.9). Hence.
following Stewartson [4], C, is related to an apparent
shift in the location of the leading-edge as seen by
the boundary-layer region.

It is also noted that the contribution to @ by the
leading eigenfunction is

Cl a3 kATﬁx';:‘

4.6
oy = 8311, “.6)

4.7

where

Aaj3 = JJ (Folh +¢1Ho)dn (4.8)
{

}
which takes on the value 028087 at ¢ = 0-72.
On the other hand. the contribution of the leading
eigenfunction to D is given by
v2
4Cip 717 1(0) (4.9)
which is seen to be unbounded as x/i — oc. That is,
although the leading eigenfunction results in a neg-
ligible contribution to the global heat transfer in the
boundary-layer region, the interaction of C;ATe**();
with the gravitational field results in a buoyant force
which. when integrated over the boundary layer. is
proportional to (x/2)"*. Such an unbounded con-
tribution to D by an eigenfunction is apparently
peculiar to natural-convection boundary layers, i.e. to
flows in which a body force acts throughout the
boundary-layer region.

5. DISCUSSION
Based upon the preceding sections. it follows that
the local wall heat flux in the boundary-layer region
is given by (for ¢ = 0-72}):
kAT
gy = —— 103568 —0-0702 C,G ™ '/*

0 10891567124 0(G ) (5.1)
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where the bracketed quantity also equals N/GY* and
the O(G~%3) term is due to the non-linear interaction
of the leading eigenfunction with itself. Similarly. the
total heat transfer is given by:

Q = KATG'4{0-4758 +0-6248 G~ 1/
+0:2809 C,G **—1-1886 G2+ 0(G™**)} (5.2)

where the bracketed quantity also equals N/G'%,
Hence, although the leading correction to the local
Nusselt number is proportional to C; and is therefore
indeterminate, the leading correction to the average
Nusselt number is known explicitly. That is,

N = 0476 GV*+0-625+ O(G~/12), (5.3)

Clearly, it would be desirable to compare (5.3) with
available experimental results. However, all such data
for N are averaged over the entire length of a finite
plate. Hence, in addition to basing N and G in (5.3)
upon x = L, it would also be necessary to include the
effects of the trailing edge and wake region upon N.

Yang and Jerger [1] have indeed estimated the effect
of the wake upon the boundary-layer and their result
would require subtracting =~ 0-325 from the 0625 in
(5.3). However, a more accurate estimate in the appen-
dix indicates that 0-086. rather than 0-325. should be
subtracted.

A second effect arising from the finite plate length
is the breakdown of the boundary-layer approximation
in the vicinity of the trailing edge. In a manner
completely analogous to that of Imai [5] and Stewart-
son [6] for the forced-flow problem, it follows that
the trailing-edge region is of order L/G}® in extent
and that it contributes a term of O(G; /8) in (5.3).
However. in a revised analysis by Stewartson [7] and
an independent investigation by Messiter [8], it has
been shown on an order-of-magnitude basis that the
effect of the trailing edge is more complicated and
extensive than above. According to this more recent
“triple-deck” analysis, the influence of the trailing
edge in the present problem extends over a region of
order L/G}/'® and contributes a term of O(G}/*°) to
(5.3). That is, the triple-deck theory indicates that the
trailing-edge effect upon N is larger than that of the
leading edge.

If this latter structure is correct, then, pending its
detailed numerical solution, the leading correction to
N for the finite plate remains unknown and comparison
with experiment is unwarranted.
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APPENDIX
Interaction of Wake and Boundary Layer (Finite Plate )

This effect arises from the influence of the wake upon
the irrotational-flow region, particularly upon the velocity
at the outer edge of the boundary layer. In estimating this
effect, Yang and Jerger [1] followed a procedure employed
by Kuo [9] for the forced-flow problem and obtained the
first-order irrotational flow by integrating a variable sink
distribution along y =0 based upon v =0 for x <0,
v=F3AeUfor0< x< L{y=0%)andv=0forx > L.

It is noted. however, that whereas the asymptotic wake
in the forced-flow problem corresponds to the flow down-
stream of a concentrated drag force, the solution of which
has zero influx at its outer edge. the asymptotic wake in
the present problem corresponds to the natural-convection
plume above a concentrated heat source, the solution of
which has a non-zero influx. In particular, if the location
of the heat source is taken to be the trailing edge of the
plate then (see. e.g. Fujii [10]), at the outer edge of the
plume (for ¢ = 0:72):

v/% -2/5
v=TF1310=(2

7z (A1)

where 1= v¥/(gpAT)'?, AT =Q/k, =x—~L and 0~ 2

(0-476)kAT G}'* where the factor “2” is due to the two sides
of the plate. Hence, (A.1) can be rewritten as:

x—L

v 1/4 s
= F1:297 — G4 === :
v=F 7 Gt ( 3 ) (A2)

which is to be compared with v at the outer edge of
boundary layer:

1270 % gpa( )
= F1270—GM4| =
v=F1270 -G} <L) (A3)

where the numerical factor in (A.3) is the value of 34,
ato =072



790 C. A. Hieger
1-8—
-6
14—
{2k
ol
o8
| J |
0 I 2 3 4

x/L

FiG. 1. Curve A: 1-270(x/L)” '*; curve B: 11297((x — L)/L)” **; dashed curve by
graphical interpolation.

The resulting values of u, for 0 < & < 1 can be fairly well
approximated by

A plot of these two results, together with a curve fit
connecting the two between their respective regions of
applicability, is shown in Fig. 1. The difference between the
(x/L)~"* curve and the lower curve represents the effect
of the wake. If this difference is denoted as q(&), where
& =x/L, and if u &) denotes the wake-induced correction

u(&) = ‘{, G1'#[0-4580 +0-0189¢ +0-002282].  (A.5)

to u at the outer edge of boundary layer, then. by super-
position of a variable sink distribution.

Hence, following Yang and Jerger [1] but with use of this
more appropriate u,, the resulting contribution to @ by the

1y  g(nde wake is & —0-086 kAT at ¢ = 0-72. (It is noted that the
u &) = — - i Gi"*J 4 . (A4) same value was obtained when the heat source was taken
n L 24 1—¢ to be at & = 0-6 rather than & = 1.)

CONVECTION NATURELLE SUR UNE PLAQUE VERTICALE SEMI-INFINIE:
EFFETS D’ORDRE ELEVE

Résumé—En considérant les deux premiers termes du développement de la couche limite, on montre a
I'aide du bilan global d’énergie, que I'effet du bord d’attaque sur le taux de transfert thermique est donné
par a kAT, ou a, prend la valeur 0.625 pour un nombre de Prandtl égal 4 0,72. Le nombre de Nusselt
moyen, pour la plaque semi-infinie, est donné par (¢ = 0.72):

N =0476G"* +0.625+ 0(G™ /'3 (1)

ol le terme indéterminé O(G ™ '"'?) $'introduit sous l'aspect d’une fonction propre dans le développement
de couche limite.
Une comparaison directe de (1) avec les résultats expérimentaux est difficile & cause de la nécessité de
définir en premier les effets d’une longueur finie qui. sur la base d’analyses récentes de la région du bord
de fuite pour la convection forcée, sont supposés faire intervenir dans (1) un terme O(G/1°),

FREIE KONVEKTION UM EINE HALBUNENDLICHE,
VERTIKALE PLATTE: EINFLUSSE HOHERER ORDNUNG

Zusammenfassung — Ausgehend von den ersten beiden Gliedern in der Gleichung fiir die Grenzschichtdicke
wird mit Hilfe einer Gesamtenergiebilanz gezeigt. daB der Einflu der Vorderkante auf den gesamten
Wirmeiibergang durch a, kAT gegeben ist, wobei a, bei einer Prandtl-Zahl von 0.72 den Wert 0.625 hat.
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Als Ergebnis wird eine mittlere Nusselt-Zahl fiir die halbunendliche Platte angegeben mit
Nu= 0476 GV*+0,625+0(G~1/'?) (1),

wobei O(G~112), vom Auftreten einer Eigenfunktion in der Grenzschichtdicke an, unbestimmt ist.

Der direkte Vergleich von (1) mit experimentellen Ergebnissen kann erst nach AbschluB von
Untersuchungen an endlichen Platten durchgefiihrt werden. doch ist aufgrund fritherer Untersuchungen
des Bereichs der Hinterkante bei erzwungener Stromung zu erwarten, daB3 bei diesen der Term O(G'/!¢)

zu (1) dazukommt.

ECTECTBEHHAS KOHBEKLIWA BBJIU3MN ITOJIVBECKOHEUHON BEPTUKAJILHON
ITJIACTHUHBI. 9PPEKTLI BBICHIEI'O MMOPALIKA
Annorains — Ha OCHOBE NEpBHIX ABYX WIEHOB B PAa3IOXEHUHM NOTPAHHYHOTO CJIOS IIOCPEACTBOM
BBIYHCIICHUS OOLIEro 3HEpreTHYeckoro OajinaHca MoOKa3aHO, YTO BIMAHHE NepeqHell KPOMKH Ha
CYMMAapHyIO HHTEHCHBHOCTB TemmoofMeHa onpenensieTcs penuddaHol a kAT, roe a, pasuo 0,625
npu Pr=0,72. B pe3ynbrare cpennee unciao HyccenbTa O osiyOeCKOHEYHOM IUTACTHHBI TNPH
o = 0,72 onpenensercs CICOYIOIIMM 00pa30oM:

N=0,476G"* + 0,625 + O(G~'"*?) 1)
rae O(G~1/12) — yeonpeneneHHbIH 9I€H, BHITEKAIOIIHI BCIEACTBUE [TOSBICHUA COOCTBEHHOR QyHKIIHA
B Pa3JIOXEHHH MTOTPAHUYHOTO CJIOS.

HenocpencrseHHoe cpaBHeHHe ypaBHeHHS (1) C IKCIEPHMEHTANbHBIMM HAaHHBIMH 3aTPYIHEHO
TIPEeXOE BCETO M3-3a HEOGXOMHMOCTH ompeaeneHus 3¢GeKkToB KOHEYHOM INACTHHBI, KOTOPbIE, KaK
TIpEANoJIaraeTcs, Ha OCHOBE MOCTEAHAX UCCeNOBaHUi 06nacTH 3aaHel KPOMKH B 3a1aYe O BbIHYX-

EHHOM TEYeHMH MPUBOAAT K [OABJICHHIO B ypaBHeHUH (1) weHa nopsnka O(G/19),

791



